

Computer Organization and architecture (ENCS238)
Second Exam

Spring Semester 2013/2014
Instructors: Abualsoud Hanani
Bayan A. Nimer

Date: 20/05/2014
Time allowed: 60 minutes

Name:
 ID:
${ }^{2}$
Circle your section: section 1 (SMW 9:00-10:00), section 2 (SMW 11:00-12:00), section 3 (SMW 12:00-1:00)

Instructions:

- You have 60 minates, budget your time carefully!
- Turn OFF your mobile.
- To make sure you receive credit, please write clearly and show your work.

Question	Maximum	Mark	Course Outcome
$\mathbf{1}$	30		
2	20		
3	30		
4	20		
Total	100		

Question 1: [30; 2 each] (Multiple choice)

1. CPU checks for an interrupt signal during
(A) Starting of last Machine cycle
(B) During execution cycle
(C) Operand Fetch cycle
(D) Instruction fetch cycle
2. In 8086 the Overflow flag is set when
(A) The sum is more than 16 bits
(B) Signed numbers go out of their range after an arithmetic operation
(C) Carry and sign flags are set
(D) During subtraction
3. Which of the following is an illegal instruction
(A) MOV AX, 25000
(B) MOV CS, AX
(C) MOV SI, CX
(D) MOV DS, 7000 H
4. Which of the following variables uses the most amount of memory:
(A) X DB 255
(B) Y DB $80 \operatorname{dup}\left({ }^{\prime} Z^{\prime}\right)$
(C) Z DW $50 \operatorname{dup}(0)$
(D) small DD $40 \operatorname{dup}(0)$
5. The result of MOV AL, 97 is to store
(A) 1001 1001b in AL
(B) ASCII code of ' A ' in AL
(C) Store 42 H in al
(D) ASCII code of ' a ' in AL
6. The effect of the following instructions on AX register is
push ax
add ax, 4
pop bx
mov cx, ax
push bx
pop ax
A) Leave it with its original value
(B) add 4 to it
(C) Clear it
(D) double it
7. To copy the hexadecimal number A to the BH register you write
(A) MOV 0BH, AH
(B) $\mathrm{MOV} \mathrm{BH}, 0 \mathrm{AH}$
(C) MOV BH, AH
(D) $\mathrm{MOV} \mathrm{BH},[\mathrm{AH}]$
8. Given that al contains the ASCII code of an uppercase letter, it can be converted to lowercase by
(A) ADD al,32
(B) SUB al, 32
(C) OR al, 11011111
(D) AND al, 00100000
9. The memory size of an 8086 processor is
(A) 2 MB
(B) 64 KB
(C) 64 GB
(D) 1 MB
10. One of the following instruction is illegal:
(A) mov al,[bx]
(B) $\operatorname{mov}[b x],[200]$
(C) mov $[\mathrm{bx}], 200$
(D) add $c x,[200]$
11. Which register will be affected by the instruction mul BX
(A) DS
(B) $A X$
(C) $D X$
(D) $B X$
12. Which of the following is a valid segment address:
(A) 9 FEE 0
(B) 9FFE2
(C) 9 FEE 4
(D) FFE16
13. To declare (define) a matrix of 5 rows and 3 columns (5×3) we use:
(A) Matrix DB 5, 3
(B) Matrix DB 5 dup (3)

Matrix DB 5 dup(3 dup(?))
(D) Matrix DB 15
14. The BP register is typically used for accessing
(A) strings
(B) Extra segment
(C) stack
(D) data segment
15. Consider the byte at address 13DDE within a 64 K segment defined by segment address 10DE. What is its offset?
(A) 20E1
(B) 2 FFF
(C) 2 FFE
(D) 20EF

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	B	D	D	D	A	B	A	D	B	C	A	C	C	C
and														

Question 2: [20 marks]
a) What is interrupt? [4pts]

Mechanism by which other Modules (ecg I/O) May interrupt normal sequence of processing to improve process efficiency.
cpu
b) Mention three sources that cause an interrupt? [6pts]
(1) I/0 (external signers such as from printein)
(3) program (overflow, divide by zero)
(3) Timer
(4) How faller
c) Consider a system with five I/O devices: D1, D2, D3, D4 and D5. Interrupts from D1 and D2 has the same priority $=2, D 3$ has priority $=4$, and $D 4$ has priority $=7$, and $D 5$ has priority $=5$. A user program begins at time $t=0$:

- $\mathrm{at} \mathrm{t}=10, \mathrm{D} 2$ interrupt occurs and it needs 20 sec to be handled
- at $t=15, D 4$ interrupt occurs and it needs 15 sec to be handled
- at $t=20, D 1$ interrupt occurs and it needs 10 sec to be handled
- at $\mathrm{t}=25, \mathrm{D} 3$ interrupt occurs and it needs 25 sec to be handled
- at $t=30, D 5$ interrupt occurs and it needs 10 sec to be handled
$\longrightarrow 10$ main prog.
$10 \rightarrow 15 \quad D_{2}$
$15 \rightarrow 30 \mathrm{D4}$
30-40 D5
$40 \rightarrow 65 \quad D_{3}$
$65 \rightarrow 80 \mathrm{Dz}_{2}$
$80 \rightarrow 90 \mathrm{DI}_{1}$

Complete the table below: [10pts]

	Interrupt handling complete
90	
80	
35	
40	

Question 3: [30 marks]
a) Identify the operand addressing mode of the second operand used in each of these instructions: [1 0pts]
a) AND DX, AX \qquad Register addressing mode.
b) SUB BL, TABLE[BX] Based addressing Made (Register Indirect)
c) ADD DX, 15 _Immediate Addressing Made
d) ADD AL, $[\mathrm{BX}+\mathrm{DI}+4]$ Based-Indexad with displacemal (memory Indirect)
e) MOV CX, IVAL[SI+4] Indexed with displacemal (mem. Indirect)
b) Assume (all values are in hex) [20 pts; 4 each]
$A X=0000 \quad B X=\$ 00 F 3 \quad C X=0003 \quad \mathrm{DX}=0000 \mathrm{SI}=0050 \quad \mathrm{DI}=0000$
$C S=2000 \mathrm{SS}=4000 \mathrm{DS}=5000 \mathrm{ES}=2000 \mathrm{SP}=3000 \mathrm{BP}=01 \mathrm{C} 1$
$\mathrm{IP}=0100$
i) What is the physical address of the next instruction to be executed?

$$
C S * 10 h+5 p=20100 \mathrm{H}
$$

ii) What is the physical address of the top of stack?

$$
55 * 10 h+5 p=43000 \mathrm{H}
$$

iii) What is the highest possible address of data segment?

highest address at offset $=$ FFFFH
Highest plysical.address $=$ BS* $10 \mathrm{~h}+$ FFFFH

vi) What is the physical address of the first operand of the following instruction?

$$
\begin{aligned}
& \operatorname{MOV}[B X+1234 \mathrm{H}], A \mathrm{AL} \\
& D S * 10 \mathrm{~h}+\mathrm{Bx}+1234 \mathrm{H}=51327 \mathrm{H}
\end{aligned}
$$

v) What is the physical address of the source operand in the following instruction?

51327

$$
\begin{aligned}
& \text { Mol DL, }[B P+S I-4] \\
& S S \times 10 h+B P+S I-4=4020 \mathrm{DH}
\end{aligned}
$$

Question 4: [20 marks; 5pts each]

a) Show how the AL and Flags are affected by

Nov AL, OBBH
ADD AL, OUCH
$A L=87 H$
$\mathrm{CF}=$
$O F=0$
FF= 0
$5 F=$
b) What will be the value in AX and the following flags after executing the following instructions? Give the answer in both hexadecimal and binary.
nov al, 09 Ah
mev bl, 073h
sub al, bl ;
movsx ax, al ;
$A X=$
 $)_{\mathrm{H}}, \quad \mathrm{CF}=0$, $\mathrm{OF}=1$ $\mathbf{A F}=0$ $P F=1$
c) What will be the value in $A X$ after executing the following instructions? Give the answer in hexadecimal:

d) What will be the value in AX after executing the following instructions? Give the answer in hexadecimal: .data
Table $\mathrm{DB} \quad 1 \mathrm{FH}, 2 \mathrm{EH}, 3 \mathrm{DH}, 4 \mathrm{CH}, 5 \mathrm{BH}, 6 \mathrm{AH}, \mathrm{A} 7 \mathrm{H}, \mathrm{B} 8 \mathrm{H}, 9 \mathrm{CH}$
.code

NOV SI, 2
LEA BX, Table[SI]
MON AL, 5
xlatb
MOVSX AX, AL
$A X=$ \qquad H

